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Abstract 

The possibility of branching processes for classical strings is investigated on the basis of the 
Nambu-Goto action. We parametrize the world sheet by a Riemann surface M and introduce 
a degenerate, semi-Riemannian metric B on M. Well-known results about the conformal group 
Diff(S t ) ×Diff(S l) are generalized to the case of (M, r/). We provide an infinite dimensional 
Hamiltonian setting for branching processes of strings. Finally, the classical background for the 
theory of quantum strings as developed by Krichever and Novikov is discussed within this classical 
framework. 

Keywords: Degenerate semi-Riemannian manifolds; Infinite dimensional Hamiltonian systems; 
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Introduction 

Classical string dynamics based on variational principles is a well-established theory 

[1] .  The world sheet Z C R 4 of  a closed string can be described by a differentiable 

map x : R x Sl--~ IR4: at each moment of  time t C R the string is parametrized by S l . 

The possibility of  string branchings has been discussed in the context of  cosmic strings 
[2] whereas this aspect has not been investigated in detail for classical fundamental 

strings. In the latter case the underlying idea is to treat a string which self-intersects as 

consisting of  two strings that obey their own dynamics [3] .  We study such branching 

processes in Section 1. From the principle of  least action we derive a local criterion 

whether a branching solution is preferred or not. 

In general, a world sheet 27 is not a differentiable manifold, but one can associate a 
"parameter manifold" M (a Riemann surface that generalizes R x S l) to a branching 

process of  a closed string. The world sheet 2 is then the image of  M, 2 = x(M). In 

Section 2 we equip M with a degenerate, semi-Riemannian metric r/. The space (M, ~/) 
turns out to be the significant geometric object to study. We show that the conformal 
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group of (M, r/) is infinite dimensional, and the associated conformal algebra splits into 
two commuting parts. 

A Hamiltonian description for branching processes is developed in Section 3. The 
classical phase space P is substituted by a collection of spaces P = U~eR P,, where 

each P~ is a function space over a manifold Cr C M, that consists of several circles. A 

string motion is represented by a section s : R ~ U~eR P,, i.e. s ( r )  E P,. For vector 
fields ~: on M we investigate the Poisson algebra of functions Q~(~') E C°°(Pr) .  The 
Poisson bracket is given by {Q(, Qa}~ = -Qt~,pA (~') where the field s¢~ denotes the 
"conformal extension" of s¢[c,. For a conformal vector field ( the function Q¢(r)  is a 

conserved quantity, and because of sCc = ~: the conformal algebra is represented on P~. 
In the last Section we provide a framework for a classical version of the theory of 

quantum strings [4,5]. The algebra of holomorphic vector fields on M is represented on 

P~, due to the fact that the conformal extension sc~ of a holomorphic vector field yields 

a "local Wick rotation" on the Riemann surface M. 

1. Generalized string dynamics 

First, we set up notations and recall some facts about classical closed strings in 

Minkowski space (R 4, g = d i a g ( -  1,1, 1, 1 )) .  A world sheet 2~ is described by functions 
x . (o01,002) with local parameters (001,002). String dynamics can be defined by the action 

s = - f - X / - ~ [ d 2 t r ,  I h l = d e t ( h ~ ) ,  (1.1) 

where h,,~ = g(a~x ,a#x)  =_ x,~x,/3 are the components of the induced metric h on ~. 

The Euler-Lagrange equations for x # are given by (we use summation convention) 

aa(~-lh[h'~/3a#x ~') = 0 ,  / . t=0  ..... 3. (1.2) 

These equations are only well-defined for Ihl ~ 0. To recover what happens at points Pd 
where [hi (Pd) - -0  holds, we consider conformal parameters (r,  00). Then the induced 
metric h reads h,~t~(r,00) = A(r,o-)  • r/~#, with r/ = d i ag ( -1 ,  1) and some function 
A > 0. With k ~ = ax~'/az and x 'u = cgxU/a00 the equations h~# = A. ~7~# are equivalent 
to 

k 2 + x  ~2=0,  Jcx ~ = 0 ,  (1.3) 

and a = fl = 0 yields A = _±2. The map r ---* x(~-,00) := ( x l , x 2 , x 3 ) ( z , o  -) describes 
the curve o f  a point 00 in R 3, and x • y = x ly  1 + x2y 2 + x3y 3 denotes the Euclidean 

scalar product. From Ih[ -- -A---~2 it follows that h is singular at (7,00) i f  and only 
i f  or moves at the velocity o f  light I . For conformal parameters and A v~ 0 Eqs. (1.2) 
simplify to 

I At such a point the singular behaviour of  ( 1.2) is reflected by a singular behaviour of the world sheet: in 
general there is a cusp at t,a. Examples are pictured in Ref. [2]. 
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Fig. 1. Intersecting string branches. 

O~(1Arla130/3x ~)  =[]xU=O, (1.4) 

with []  = r/"#O,~0t~. Notice that all singular terms drop out in (1.4). 
For any fixed Lorentz frame a conformal (z, o')-parametrization is associated to a 

world sheet Z as follows. To obtain 7- one slices 2 with the hyperplane x ° = R .  T, 

and the ~r-parameter is fixed by (1.3) up to a shift o-' = o- + o'0, and up to a reflection 

~r' = -o- .  One can choose R E R+ such that o- is 2zr-periodic. The explicit representation 

of  27r-periodic solutions of  (1.4) (S 1 ~' R/2~r) is useful for geometric considerations: 

The unique solution of I-'Ix t~ = 0 with respect to C 2-smooth initial data on S t , x u (0, ~r) = 
x~(cr) and ku(O,o -) = u~(~r), is given on ~ × S I by 

o'+T ,/ 
Cr- -T  

~ z = o  . . . . .  3 .  (1.5)  

Now suppose that two branches of  the string intersect, x ( 0 , r 0 )  = x(o-o,r0) ,  as in 

Fig. 1. The solution (1.5) for xU(r, o') implies that both branches of  the string move 

through each other without any influence. However, we can take a different point of  

view; namely that we are given two strings at To, and each one obeys its own dynamics 

for r>_ TO: 

~ ' ( r ,  o') = ½{# ' (o"  + r - To) + # ' ( o r  - r + 7 0 ) }  

t r + r - - r O  

+21 f rU(o.t)do.,, o" E [0, o0) 

o---,r+,r o 

~'(~- ,  , r )  = ½ { # ' ( o -  + r - to)  + z~( ,~  - ~ + ~o)} 

o ' + r - - r o  , /  + ~ s~'(o")d~r ' , o" C [o-0,27r) .  

o'--z+~'o 

( 1.6) 
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The functions y~(o-) = x/~(ro, o ") and r~ (o  -) = :dz(r0 ,o  -) have periodicity O-o, and 

analogously z ~ and s/' are (2~r - o-0)-periodic functions. The equations l-q2/~ = [:].~" = 

0 are valid only in a distributional sense because of  the kinks which arise from the 

intersection point. We remark that no conservation law (energy, momentum . . . .  ) is 

violated by the splitting. When the points o'0 and 0 move at the velocity of  light Eqs. 

(1.2) are not well-defined because of  h(pd) = 0. Outside this point both solutions (1.5) 
and (1.6) are well-defined, hence there is no natural preference for one of  them. 

We thus consider how the action behaves as a function of  r (r0 := 0, for convenience). 

The on-shell action So = f~2d20- follows from (1.1) and (1.3). We examine the 

difference o f  

r 2~r 

Sfree ( T )  ;=ffzd¢dr' 
0 0 

and 

r o'0 r 2~r 

Ssplit(T)=-//~2dod'lt-J-//~2d0-dT/: 
0 0 O cro 

Proposi t ion  1.1. AS(r) := Sfree(r) - Ssplit(7") has derivatives ( d AS/dr) ( 0) = 0 and 

d2 AS 
~ T  2 ( 0 )  ----- (/gO(OrO) - -  U o ( O ) ) 2  __ (X~(Oro)  - -  x ~ ( O ) ) 2 .  (1.7) 

Proof. The next formula follows from the fact that the values of  xJZ(¢,0-) for the 

solutions ( 1.5) and (1.6) coincide outside the 0--intervals [ - r ,  7-] and [ 0-0 - r, 0-0 + 7-] : 

3" 

dAS (r) f d'r = [5c2 ( r '  ° ' )  + ±2 ( r '  ° '° + ° ' )  ]d°" 

- - T  

T 

f[i2(r,0-) .2 - + 2  (r ,  0-0 - r + o') ]do" 

0 
0 

f - -  [}2 ('l', O-) + 2 (r,o'o+7"+o')ld0-.  

- - T  

Thus, AS(0) = 0. One has to be cautious with terms like (d/dr)  f 0 z ~ 2 ( r , o ' ) d o  " s i n c e  

.t2(~., o-) is discontinuous at o- = r. We find 

T 

0) 
r=O elO 

o 
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Differentiating AS(~-) and collecting terms from (1.5),  (1.6) yields AS(0) = (u0(o-0) - 

u0(0) )  2 -  (x~(o'0) - x ~ ( 0 ) )  2. Since the time component of  this expression vanishes 

we obtain (1.7).  [] 

A possible modification of  string dynamics is provided by the requirement of  least 
growth of S(7-). This will then imply branching effects of  strings on a classical level. For 

example, for AS(0)  > 0 the splitting solution is preferred. Thus the first term in (1.7) 

has the following effect: at high relative velocities lu(o'0) - u(0)]  a splitting occurs, 

whereas at low velocities there is no "interaction". To see what the second term in (1.7) 
means, suppose that the two string branches are locally straight lines, and u0 --- 0 holds. 

In the case of  solution (1.6) two kinks on each string move away from the intersection 
point. The points o- between these kinks move at the speed i i ~lx0(o'0) - x~(0)l ,  thus 
AS(7-) decreases. 

Remarks. I. This kind of  dynamics is not invariant under time reversal: Suppose a 
splitting occurs at 7- = 0. Then the time-reversed motion is a process where two strings 

merge into one. However, the minimality criterion also enforces a splitting for 7- < 0, 

since at 7- = 0 only u0 changes to -u0 ,  which has no effect on (1.7).  
2. One can show that the sign of  AS(0) does not depend on the Lorentz frame 

in Minkowski space, if  such frames have the same time orientation. In that sense the 

dynamical criterion is Lorentz invariant. 

So far we discussed solutions of  the form (1.6) but it is obvious how to construct 

merging solutions of  the same type. We only have to perform some shifts o'i ~ o'i + Oi 
along each string in order to get a continuous parametrization of  that merging solution. 

2. The geometry of parameter manifolds 

First, we describe how branching processes can be parametrized by Riemann surfaces. 
Consider the history of  n classical strings which do not interact for 7- < 7-1. At times 

7-1 . . . . .  7"k string branchings occur, and the configuration for 7- > rk consists of  m 
strings. It has been shown [6] that "light cone diagrams" can be parametrized by 
Riemann surfaces M and the construction of  M given there applies to our picture of  
string motion. In addition, the abstract evolution parameter 7" in Ref. [6] is now related 

to physical time by t = R • 7-. The "position" of  the strings on M at fixed time 7-0 is 

described by 

C~o={qEMlT-(q)=7-0} ,  7-(q) = Re ( f  K)  , (2.1) 

\ q 0  / 

where q0 is a fixed reference point and I< is a holomorphic differential on M. The critical 
points Pc of  the function I" : M --* 1~, Eq. (2.1),  are the zeros of  x, and the set {Pc } 
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describes all points where the strings split or rejoin, i.e., % := 7-(pc) E {~'1 . . . . .  Tk}. 
The o'-parameter is given by o- = Im fqq0 K modulo some angle o'i along each string and 
modulo some twist angle if two strings merge, due to the fact that K has purely imaginary 

periods. Thus, if q0 E M is not a critical point, the parameters u = 7"+i(r = fqqo x define a 
local holomorphic chart around q0. An essential observation is that these charts consist of  

conformal parameters for the string world sheet. We call (M, K) the parameter manifold 
of  X. 

Next, we introduce a degenerate metric on M. This is motivated by the following 
observation. In a conformal chart V C M := M\{p¢}  the action (1.1) can be written as 

rSv = - ~ rl"~a~ xO#x d2~r , (2.2) 

v 

and the equations of  motion (1.4) follow from this action. Sv contains the flat metric r/ 

and is locally (i.e. for any domain V C/~/ )  invariant under conformal transformations. 
These are diffeomorphisms 1/' : V ~ W C &/, satisfying g t * r / =  F .  r/ with a smooth 

function F. This symmetry property of  Sv implies conservation laws for the equations 

of  motion. In that sense the metric r/ is of  physical importance and not the pullback 
metric _±2 .7 / .  

L e m m a  2.1. The metric r I = -dT" 2 + do "2 on 1(4 has a unique C~-smooth  extension to 

M. It is given by *?(Pc) = O, for  all critical points Pc on M. 

Proof  We represent r/ in a chart around Pc with coordinates (7"~,o-r), which obey 

7 " + i o - - a  = ( 7 " ' + i o - ' ) " ,  with n >_ 2, a E C and Pc ~ (0 ,0 )  [6].  Then a o ~ / a o  ~ '  
depends analytically on 7"~, o J and vanishes in the limit p ~ Pc. The assertion now 

follows from r/~,t~, = (0o-"/0o -~' ) (Oo,~/ao'~')r/,~t~. [] 

Definition. The conformal group o f  (M,  71) consists of  the diffeomorphisms g '  : M --~ 
M which obey tu*r /=  F .  r/, where F 4 : 0  denotes a smooth function on M. 

We now consider a one-parameter group of  conformal diffeomorphisms g's, i.e. a 

conformalf low {~Fsls E R}. Because of gr0 = idM and g t~r /=  Fs . r  i, the critical points 

Pc are fixed points of  ~s. The conformal vector field ~ = ( dgts/ds)Is=0 = ~'0 generates 
this flows on M, and ~(Pc) = ~PO(Pc) = 0 holds. The Lie algebra of  conformal vector 
fields on (M, r / )  is denoted by CM. It is well-known that in conformal parameters 

= ~°0, + ¢10~ E CM obeys 

~:,o = ~:1, ~:]0 = s~.l " (2.3) 

From gt~'r/= Fs • r/ we do not get any conditions on the derivatives of  ~ at Pc because 
the resulting equations are trivial (0--0) due to the vanishing of r/ at Pc. 

To examine the conformal group we will need the set F of  lightlike geodesics y on 
• ~/. It is a simple fact that F consists of  two parts F + and F - :  geodesics y ±  C F + 
satisfy o -± = const, in local light cone coordinates o -± = 7- -t- tr around each p E /17/. 
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Fig. 2. Light curves covering M. 

The curves y+  arising from C~ cover ~ / s i nce  along a fixed "string tube" [Ta,~'b] X S l 

these curves wind up with a constant slope of  A~'/Ao- = :F1 (an example is pictured 

in Fig. 2).  The exceptional curves ~ converge into critical points p~ or emerge from 

them. 
The general solution of  (2.3) in tr+-coordinates reads ~c = f ( o , + ) a ~  + g ( o - - ) c ~ - ,  

with a~± = ½(0r + a,~). Of  course, this local decomposition of  s c into a c~,~ and a O~- 
part defines a unique global decomposition s c = s c+ + ( -  with Lie bracket [s c+, go-] = 0. 

T h e o r e m  2.2. CM consists of  two commuting, infinite dimensional subalgebras: CM = 
C + • C~t. Each s c = ~+ + s c -  C CM is uniquely determined by an arbitrary restriction 
( lc ,  (2.1), and ~ can be obtained by parallel transport o f  (+ [c, along the light curves 

T + . 

Proof In a neighbourhood of any point p 4: pc we have ~: = f(tr+)O~,, + g(o'-)O,~-, 
and the coefficients f ( o  -+) and g ( o - - )  are constant along the curves y+ and y - ,  

respectively. Thus (+  and ( -  coincide with those fields which arise from ~C:Llc, by 

parallel transport along y+ (with respect to the metric r/). On a curve )%+ the field 

( +  must vanish; otherwise ( (Pc )  would be singular since Otr~t/Oo "~ diverges at Pc, cf. 
Lemma 2.1. An analogous argument holds for y~-, ~:-. Therefore, the components ~:+ 

are fixed by this construction on the whole of  M. The zeros of  ~:+ along Tc ~ impose 

finitely many vanishing conditions on (+[c , ,  say at the points p~ . . . . .  Pt C C~. From a 
smooth function f on Cr with compact support on C~\{pl . . . . .  pt} we get the vectors 
f ( o ' )  O,T+ [c,. Parallel transport of  these vectors along ~+ yields a global conformal vector 

field ~:+ on M. Since the vector space of  such functions f on Cr is infinite dimensional 

the same holds for C +, and also for C~t. [] 

An arbitrary vector field ge 0 along Cro (to --/= rc) splits into ~:0 = ~:~-a,r~ + ~:oag - . By 
parallel transport of  so0 ~ along 3, + one obtains the field scc = s c+ + s c -  on M. In general, 
~:c is discontinuous at the points "y~. To be definite we set s% = 0 along 7~.  

Definition. The field sCc, obtained from C0, is called the conformal extension of ~:o. 

T h e o r e m  2.3. The conformal group o f  ( M, rl ) is infinite dimensional. 
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Proof It suffices to show that for each generator s ¢ E CM the conformal flow ~s  = 
exp(ss  c) exists on M for all s E JR. Recall the set {Tq .. . . .  7"k} where branchings occur. 

Each time slice C,  with 7" E (Zk, OO) consists of  m disjoint components C j,  j = 1 . . . . .  m. 

The subspaces Mj := [..JrE(zk,oo) C j  C M are parametrized by holomorphic coordinates 
u = ~ '+  io- with o- = o- mod o'j. From u' = u I "[- iv 2 = exp(-2¢ru/ tr j )  we obtain another 

holomorphic coordinate o n  Mj and u' = 0 corresponds to a point Qj outside M. We 

also obtain additional points Pi from N i -- [--JrE(-oo,rt)C~, i = 1 . . . . .  n. In this way a 
holomorphic compactification M = Mt_J{Q1 . . . . .  Qm, P1 . . . . .  In}  is defined. One verifies 

that the components of  ~: = sclc~t,~ + ~:20: vanish in the limit ( v l , v  2) ~ 0, since ( +  is 

bounded on /~/. We can thus extend continuously ( to ~ by the definition ~ (Qj )  = 0, 

j = 1 . . . . .  m. Analogously we set -~(Pi) = 0. The continuous field ~ is defined on the 

compact  Riemann surface M, so it generates a global flow {-~slS E ~}  on M. The 

conformal flow on M is now given by exp(s~)  = ~-~IM. [] 

In the next section we need the geometric structure of  the sets C~. If  r ~ {rl . . . . .  rk} 
then C~ is a smooth submanifold of  M. C~ is naturally isomorphic to C~, for r,  r r E 

(ri,7"i+l), i = 0 . . . . .  k (r0 = --oo,~'k+l = oo).  The isomorphism I~,  : C~ ~ C~, is 
obtained by an identification of  points p E C~ with p~ E C~,, lying on the same integral 

curve of  the vector field ?r on /~/. A critical curve C~ is not a smooth manifold but 

C~, := Cr,\{pc} can be embedded into Cr for r E (ri-l,1"i), and also for I" E (ri, ri+l), 
by the same identification as above. Therefore, two natural compactifications of  C~, exist: 

the compactified space Cr,> is isomorphic to Cr, I" E (ri-1,7"i), and C~,< is isomorphic 
to C~, ~" E (ri, ri+l ). For example, in Fig. 2 one obtains one circle S 1 for C~> and two 
copies of  S 1 for C~,<. By I~, : C~ ~ C~,>, z E (ri-l,7"i), we denote the first identifying 

isomorphism. 

3. A Hamiltonian description for branching processes 

Before we consider the theory with varying string topology we set up the general 
context needed. A Hamiltonian description for the classical string starts with 

H ( x ,  Tr) = ~ (x '2 + 7r2)dtr (3.1) 

S L 

together with the constraints 7rx' = 0, ~ + x  r2 = 0. The domain of  H is the Hilbert space 
P := ( ~ o  H1 ($1) )  @ ( ~ ) ~ 0  L2(S I ) ) ,  which is an orthogonal sum of  ni lbert  spaces. 
H 1 C L 2 is the first (real) Sobolev space and P is denoted by H l (Sl)  4 × L 2 ( S  1 )4, for 

short. The canonical weak symplectic form a~ : TP x TP -* R is defined by (cf. Ref. 
[ 7 ] )  

a~(x.~) ((V, W);  ( y Z ) )  := (V ~', Zu>L2 -- (Y~', W~,)~2. (3.2) 

Since to is a weak form, the defining equation for Hamiltonian vector fields Xf ,  
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df(V,W) =eo(Xf;(V,W)) V(V,W) E TP, (3.3) 

need not have a solution at each (x,  Tr) E P. Poisson brackets of  Cl-functions f ,  g 

on P, {f ,g} := w(Xf;Xs),  are defined on the common domain D = Df AD~ of Xf 
and Xg. The domain of  XH = (Tr, x ' )  is given by DH = H2(SI )  4 × H I ( s I )  4, which is 

a dense subspace of  P. The solution (x,  Tr)r of  the Hamiltonian equation of  motion, 

(5c,#) = XH, starting at (x,  Tr)o is given by (1.5) together with 7r = Jc. For each r the 
linear map Cr : (x,~r)o ~ (x,  zr)r is continuous on H2($1) 4 × H1(SI )  4. Its unique 

continuous extension yields the Hamiltonian flow of XH on P, c/,T : p ~ p 
To describe branching processes it is natural to substitute S 1 by Cr in (3.1).  The 

generalization of  P then reads Pr := H l (Cr)  4 × L2(Cr)  4, where the integration measure 

is defined by the conformal parameter o-. Since the critical curves C,, are not smooth 
manifolds we set P,, :=  HI(Cry>) 4 × L2(Cr,>) 4. This is a natural choice since the 

time evolution (as explained below) of  any state (x,  Tr) E Pr, ~" E (7"i-1,7"i) ,  yields 
an element of  HI(Cry>)  4 × L2(Cr~>) 4. Different string motions are parametrized by 

different systems of  curves C,. We aim to describe all possible motions which can be 
parametrized by a prescribed, fixed system 2 For that purpose we will restrict each Pr 

to a subset p r  such that the evolution of  any (x,  ~-) E p r  is described by these C~. This 

kind of  restriction has to be added to the restriction by the constraints x ~2 +Tr 2 = x~Tr = 0. 

Definition. The symplectic form to~ on P~ is given by formula (3.2) where ( , )a2 
denotes the scalar product in L2(C,), resp. in L2(Cr,>). The Poisson bracket reads 

{f,g}r = wT(Xf, Xg) with Xf,Xg E TPr. We call T' = [.Jr~(Pr, w~) the generalized 
phase space. 

Recall the isomorphisms l~r,, which are defined for r, r '  E Jo = ( - - O 0 , T I  ] ,  T, T ! E 

Jg = (Ti, r i+l]  with i = 1 . . . . .  k - 1, or T,~" E Jk = ( r k , ~ ) .  By pullback they induce 

Hilbert space isomorphisms I~* r, : Pr' ~ Pr. A string motion for r E Ji with initial 

state (x,  Tr)r0 E Pro is described as follows. The vector field (zr, x")ro defines the 
Hamiltonian flow c/,i on Pro. We identify ~/'i(x, Tr)r0 with 1" (¢i (x 7r)ro) E Pro+,, 

~ r 0  + u , ' r 0  ~, U \ , 

as long as To + u E J/ holds. In this way a section si : Ji ---' U,Ej~ Pr with a prescribed 

value at To is obtained. 
We now define the "transition" of  a function f on Cr,> to a function f on Cr,<: we 

restrict f to Cr, C Cr,>, and then extend this restricted function arbitrarily to Cry< D Cr,. 

In this way a function f is defined modulo changes on a set of  Lebesgue measure zero. 
We obtain by this procedure a Hiibert space isomorphism Fi : L2(C,,>) 4 × L2(Cr,> )4 
L2(C,~<)4 × LZ(C,,<)4. Notice that F/ describes the physical re-interpretation of the 

string configuration. 

2 Such systems {Cr} can be defined on any compact Riemann surface M by (2.1). The existence of r with 
prescribed properties is well-known, cf. Ref. [8]. 
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L e m m a  3.1, The image of (x,~r) E Hi(cry>)  4 × L2(Cr~>) 4 under Fi is an element 
of H l (C~,<) 4 x L2(Cr i<)  4 /f  and only if the x-component of Fi(x, ~)  is continuous at 
Cr,<\~r,. 

Proof We can identify an HLfunct ion on a one-dimensional space with its unique 
continuous representative, due to the Sobolev Lemma. (x,  ~r) E H I (Cr,>) 4 x L2(Cr~>) 4 

implies continuity of  the x-component of  F/(x,~-) on Cr0. The remaining points to 
consider are C~<\CT~. The assertion now follows from the Sobolev Lemma. [] 

F o r T 0  < 7-1 the evolution of  (x,  Tr)r0 E Pro is described by So : (-c~,7-1] 
Ur~( -~ . r l ]  Pr. We want to parametrize the time evolution by the curves Cr. Since Cry< 
is isomorphic to Cr, 7- E (7-1,7-2], we must somehow interpret so(7-1) as a function on 
Cry<. From the physical picture it is natural to do this by the isomorphism F1. However, 
we obtain the transition condition so ( 71 ) E F l- 1 ( H 1 ( Crl < ) 4 x L 2 ( Crt < ) 4), because only 

in this case there is a well-defined time evolution of  Ft (so(7-1)), for 7- E [7-1, z2]. This 
is physically reasonable due to Lemma 3.1: only if the x-component is continuous along 

Crt< ( ~  closed strings) one obtains a well-defined motion. If s0(7-1 ) does not satisfy the 
transition condition we exclude the initial state (x,  7r)r0 from Pro. Inductively, we obtain 
further restrictions on Pro by the conditions si-1 (7-i) E Fi -1 (Hl (Cr ,<)  4 x L2(Cr,<)4). 
Any state of  the resulting set Pr  o C Pro has a time evolution that is described by the 
curves Cr. For arbitrary 7- E R the set pr  is now obtained by the dynamical evolution 

of  P ;  0. 
Summarizing, a string motion on (M, K) is given by a section s : R ~ Ure~ Pr, and 

the set of  states at fixed 7- has to be restricted as described. Notice that by "section" we 
only mean s(7-) E Pr. The set UrER Pr has no canonical smooth vector bundle structure 
because the spaces P~ and Pr, are not naturally isomorphic for arbitrary 7", 7-'. 

Next, we examine the Poisson algebra of  functions that are related to conformal trans- 
formations. Due to Noether's theorem for each conformal vector field ~: the conserved 
quantity Q~(7-) = fc,  ~T~°d°" is associated, i.e. Q¢(7-) = const, for any solution of  

(1.4).  The canonical energy momentum tensor T J  = x ~x  ,~ - 16~x.rx,r is derived from 
S, Eq. (2.2).  In phase space variables the function Q$(7-) : Pr ~ ~ reads 

O~(7-) (x,  or) = - f [  ½sc°(~r 2 + x '2) + ~l~'x']do'. (3.4) 

C, 

Theorem 3.2. An anti-representation of the algebra CM 
H 1 (Cr) 4 by Poisson brackets of  the functions (3.4): 

{Q¢,Qp}r =-Q[~,p](7"), V~,p E CM, Vr E ~ .  

is defined on 112 ( Cr ) 4 x 

(3.5) 

Proof The Fr6chet derivative of  Q~(7-) E C ~ ( P r )  is given by 
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= - [ [((°x' + ~:'~r) v' + (~ r  + ~'x')W]do, d Q ( ( x ,  "B" ) (y,w) 
c~ 

(y, w) c T(x,~)P.~. 

We integrate the first term by parts and obtain from (3.3) (with XQ~ = (Y¢, Z~)):  

f [ (~°x'  + ('7"r)' . V - (sc°Tr + ( l x t )  • W]do" = (Y(, W}L2 -- (Z(, V}L: . 

C~ 

It follows that (Y(, Z~:) = - ( ~ 7 r  + sClx ',  ( ~ X '  + ~:lTr)'), so the Poisson bracket reads 

{Q~, Qp},  = (Y(, Zo}L2 -- {Z¢, Yo}L 2 

= / ( s ~ ° T r  + ( I x ' )  (pOx' + plqr)'do" -- (/~ ~ p)  
. 1  

c, 

where ~: ~ p denotes the same integral with ~: and p interchanged. We find for 

{Q(,  Qp}~ : 

f { (~°Otp° + ~l Olpl )'n'x' -- ½ (P°31(1 - (101 pO)x'2 
C, 

+ ½(sc°a,p ' - plal(°) ,n2}do- - ( (  ~ p) .  

We use (2.3) to substitute the first term in each bracket, e.g. sc°Olp ° = ~Oop 1, and after 

collecting analogous expressions from ~: ~ p the assertion follows. [] 

A crucial step in the proof  is the substitution of  terms like ( °a lp°  by (°aopl because 
only in this way one obtains the r-derivatives which are present in the Lie bracket [s c, p ] .  
For general vector fields ~:, p on M this substitution is not allowed but we observe that 

the field ~lc,o coincides with its conformal extension ~:clc~,,- Thus Q~O'0) = Q~., (TO). 

Coro l la ry  3.3. Let ( and p be arbitrary smooth vector fields on M. For 7" 4: rc the 
Poisson bracket {Q¢, Qp}T is given on H2( C~) 4 × H 1 (C~) 4 by 

{O¢, Op}r = -QI~,p~I (7") , (3.6) 

where ~c and Pc denote the conformal extension of  ~, arising from Cr. [] 

For ~- = 7c and sO(pc) 4 : 0  the components ~:±(p) diverge in the limit p ~ Pc. We thus 
excluded 1-= ~'c. Notice that this corollary remains valid for sop, pp E TpM ® C. 

4. The classical background of KN-theory 

The purpose of  this section is to show that holomorphic objects on M are useful 
tools in the Hamiltonian setting of  string dynamics in Minkowski space. We consider 
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the case o f  one string for r < r l ,  and one for r > rk, because (4.1) holds in this 

case (for generalizations, cf. Ref. [9] ). We denote the space of  complex valued C °~- 

vector fields on C, by £(C~) and the space of  meromorphic vector fields on M that 

are holomorphic on M by /~(M). In complex (r,o-)-coordinates any e E / : ( M )  reads 

as l ( r  + io')½(& - ia~). If  we fix r ~ rc and use o" as coordinate along C,, the 

"restriction" 

Rr : l ( r  + io') ½(0r - iOa) ~ - i l ( r  +io')Oa 

is a Lie algebra homomorphism from £ ( M )  to /2(C,) .  A countable basis {e,} of  

/2(M) exists [4] .  Meromorphic quadratic differentials 1"2 on M which are holomorphic 

on M are represented locally by /2 = f ( z ) d z  2. Let {O n} be the dual basis to {en} 
with respect to the pairing (.O,e} := fc,  S2(e,.),  i.e., (~m,en) = t~n m [5].  For r 4= r~ 

a smooth quadratic differential ~ ,  on C, has an expansion (i~ is the pullback of  the 

embedding i, : C, ~ M) 

o o  

12. = Z b. " i*O" . (4.1) 
- - O O  

This expansion allows us to describe the energy momentum tensor T conveniently. In 

o-:L-coordinates T reads T = T++&r + ® d~r + + T__d~r- ® dcr-, with T.. = ( Ox/&rn) 2. 
We obtain i*T = T++dd ,2 + T__&r  2 =: T+ + T_, and represent T+ as in (4.1), T+ = 

E_~o~ bn(r)  . '*t,~Q n. 

Proposi t ion  4.1. For r 4= rc the components of the T+-part of  the energy momentum 
tensor are given by b~( r)  = fc,  T+( R,e , ,  .) =: Le,, ( r).  They satisfy the Poisson algebra 

{te,, ,Ze,,}r = Z[e,,,e,,](7 ) . (4.2) 

Proof From i?~(dr + idtr) 2 = - d t r  2 we obtain for fc  T+(Rre, , . )  = - f  c. iln(r + 
itr ) T++do': 

- ~ bm f(iTon)( )l.(r + ier)ido-= ~ bm f l'2m(r q-io')In(r -k-io')idtr= bn.  
nl Cr m Cr 

For s ¢+ E C + Eq. (3.4) yields Q~+(r) = - f c ~ + ( r ,  tr)T++do ". Comparing Q~+ with 
L~,, = - fc.  iln(r + io')T++do" leads to the vector field e + := iln(ro + i t r ) a ~  on C, 0. Its 
local conformal extension in a neighbourhood of  C, 0 is given by 

e + c ( r + i ~ r ) = i l n ( r o + i ( ~ r + A r ) ) O a ~ ,  r = r o + A r .  (4.3) 

At r = r0 we have Le,, = Qe+,. Using (3.6) and (4.3) one calculates 

{Le,,,Le.,}ro = {Qe, ,+, Qe.,}ro = +  -Q[e,,c,e.,cl+ + = -Q_[e,,,e.,]+ = L[e..e.,] . [] 

The conformal extension (4.3) is obtained by a substitution in the argument of  In, 

namely (r0 + Ar + io-) H (r0 + i(tr  + a r )  ). In essence, this is a local Wick rotation 
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because we only substitute AT by idr. The derivative 0,~+ acts on the conformal extension 
l.(To + i(tr + At))  in the same way as id/du acts on l.(u). In this way the complex 
Lie algebra structure shows up. Notice that the concept of a Wick rotation only makes 
sense because a canonical splitting of the Riemann surface into timexspace is induced 
by the differential K. 

Remark. The fields e, obey a Lie algebra [en,em] = ~ j  CJnmen+m+j with structure 
constants CJm, and the summation ranges over some fixed, finite set [4]. Thus (4.2) 

yields a r-independent Poisson algebra: { Le,,, te .  , }7 = Z j  CJmZe,,~-.,~j ( T). 

The whole setup for ( (+ ,T+)  can be repeated for ( g - , T _ )  by simply using the anti- 
holomorphic bases {en} and {-~m}. The resulting components of T_ = ~--]~_o~ L~,~" 
obey 

{LT,,,L~.,}T= L[~,,,~.,I = Z-C~mL~ ...... j ,  {Le,,,L~.,}r =O, 
J 

where the C~m are the structure constants of [en, em]. There are two major advantages 
in dealing with Le,, and L~., instead of Q~:± (especially on the quantum level): 

(i) The algebraic structure of {Le,,} is related (by complex conjugation) to the struc- 
ture of {L~.,}. Such a property does not hold for (+:  there is no canonical map 
which assigns (+-fields to (--fields because the conditions ( + ( y ~ )  = 0 are very 
different. 

(ii) The algebra £(M)  is generalized graded and different representations for central 
extensions of £(M)  are available [4,10]. An analogous grading for CM is not 

obvious. 
Finally, we point out that our description differs from the "Euclidean version" of 

string theory [ I 1 ]. There, the action Scud has a conformal symmetry with respect to 
a Riemannian metric. The corresponding conserved quantities Le,, represent E(M) on 
phase space, but there is no Lorentz structure present. In our description both E(M) 
and CM are represented on the same phase space. 
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